Základy vizualizace dat | Mňamka #231

Díváte se do tabulky plné čísel a jednotlivé sloupce vám vzájemně splývají. Než se dostanete na konec řádku, ztrácíte přehled o jeho začátku a opačně. Co ta čísla vlastně znamenají a jak se v nich vyznat? 

Jako řešení se jeví vizualizace dat do přehledných grafů, ale jak to udělat? Shrnuli jsme pro vás pár základních kroků, jak na to.

1. Pochopení kontextu

Nejprve je třeba se rozhodnout, co chceme prezentovat. V případě, že se rozhodneme vybrat graf a až poté data, pak to nemusí dopadnout dle našich představ. Můžeme být v konečném výsledku zmatení. Graf by možná vypadal pěkně, ale mohl by být zcela nevhodný k daným potřebám.

Než si tedy začneme vytvářet graf, musíme se podívat na data a zamyslet se nad tím, jak v konečném výsledku mají vypadat. Zároveň ale myslet i na to, zda bude graf představovat, to co má a zda bude čitelný. Vždy přizpůsobujeme graf našim datům, nikoliv data grafům.

2. Který graf použít

Jaké grafy tedy k našim datům máme použít? Každý graf se hodí na znázornění trochu jiných dat. Na výběr máme širokou škálu grafů, které můžeme použít. Na pár z nich se podíváme.

Začneme spojnicovým grafem, který je jedním z nejpoužívanějších. Slouží pro znázornění změn hodnot v čase. Spojnicový graf ukazuje celkový trend s malou šancí na nesprávnou interpretaci.

Dalším často využívaným grafem je sloupcový graf, který poskytuje rychlý přehled o poměrech jednotlivých hodnot. Pro kvantitativní údaje, jako jsou prognózy poptávek nebo třeba prodané produkty, je tedy vhodné použít právě sloupcový graf.

V neposlední řadě se podíváme na bodový graf, který nám ukazuje vztah mezi dvěma kategoriemi. Bodový graf nám ukazuje, zda mezi daty existují korelace či ne. 

3. Smažte zbytečnosti a zvýrazněte podstatné 

Grafy je třeba udržovat přehledné, abychom se v nich vyznali.

Zeptejme se sami sebe: „Když tohle odstraním, změní se něco?” Pokud je odpověď „Ne”, nastal čas trochu graf promazat. Zmizet může mřížka nebo ohraničení grafu, osy můžeme vyčistit od defaultních názvů a přidat výstižnější. Podrobnosti a potřebný obsah můžete vložit do přílohy. 

Nesmíme zapomínat zvýrazňovat v grafech to, co je důležité. Můžeme k tomu použít velikost písma, tučný, podtržený nebo kurzívou psaný text. Opravdu důležité části mohou být psány velkým písmem.

Důležitý obsah vkládáme do záhlaví, neboť to je první věc, které si všimneme.

4. Design 

Jak je všeobecně známo, jíme očima, to samé platí pro vizualizace. Barvy a styly nám pomohou porozumět datům. Co třeba zvolit stejnou paletu barev, jakou používáte ve svém firemním logu? Nebo ztráty odlišit od zisku použitím červené a zelené barvy? Tohle vše nám pomůže se v grafech zorientovat. 

Obecně bychom se měli držet symboliky barev. Teplotu zobrazovat na paletce
od modré po červenou a pro množství v regionech zvolit jednu centrální barvu, které podle četnosti výskytu upravujeme sytost. Bílé pozadí je základ. Vždy bychom měli myslet na přehlednost a nenechat se unést přílišnou kreativitou. Udržujme stejné barvy grafu a jeho popisků, ať víme, co k čemu patří.

5. Storytelling

Pro větší srozumitelnost můžeme při vysvětlování dat vyprávět tématický příběh, který má přesah do emoční oblasti, kam se fakta nedostanou. Příběh by měl být srozumitelný, poutavý a mít pointu, která souvisí s naší problematikou.

6. Příprava na prezentaci

A je tu velké finále! Z naší původní tabulky plné čísel máme už vytvořené krásné grafy, ale ještě pořád nemáme vyhráno. Na prezentaci svého výsledku bychom si měli dát záležet. Stejně jako na začátku naší cesty, je potřeba pochopit kontext
a zaměřit se především na potřeby publika naší prezentace. 

První slidy zaměříme na hlavní myšlenku - problém, který jsme zanalyzovali. Přidáme data, která ho demonstrují a uvedeme i upozornění na možné následky, které by nastaly, pokud by zůstal neřešený. Následovat by mělo i možné řešení
a ilustrace jeho přínosů. Na konci nezapomeneme na shrnutí problematiky.

7. Feedback

Dobrá rada nad zlato. Vždy se vyplatí ptát se na názor kolegů nebo přátel i v průběhu tvorby vizualizace. Zajímat se o to, na co se soustředí oni a co jim přijde přehledné a srozumitelné. Finální feedback nám pomůže poznat názor našeho publika a ideálně se z něj poučit pro příště. 

Co závěrem? Doufáme, že pro Vás byl tento článek zajímavý a dozvěděli jste se třeba i něco nového. Držíme Vám palce při vizualizaci Vašich dat!

Zdroje:
[1] Cole Nussbaumer Knaflic, “Storytelling with Data: A Data Visualization Guide for Business Professionals” (2015), Wiley, 1st edition
[2] SADEK, Daffa. Making People Understand Your Data: A Data Visualization Tutorial. 2021, , 1. Dostupné také z: https://daffasadek.medium.com/making-people-understand-your-data-a-data-visualization-tutorial-9a4abe13a7a6 
[3] OPHELIAMING. 10 Tips for Storytelling With Data Visualization to Win Your Audience. 2021, , 1. Dostupné také z: https://medium.com/geekculture/10-tips-for-storytelling-with-data-visualization-to-win-your-audience-19753579905a

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, rádi to s Vámi probereme :-)

Petra Nedvědová
datový detektiv

Jan Pajer
datový detektiv

Pilíře úspěšného datového projektu | Mňamka #544

Pilíře úspěšného datového projektu | Mňamka #544

V Bizztreatu máme za sebou desítky datových projektů napříč různými odvětvími např. jako e-commerce, retail, výroba, média nebo obchod. Z praxe víme, že mnoho datových projektů selhává – nedoručí očekávaný přínos, uvíznou na půli cesty nebo se zacyklí v nekonečném „ještě to ladíme“. Bez ohledu na typ projektu či sektor platí, že úspěch vždy stojí na pevných základech – pilířích, které rozhodují o tom, jestli výstup skutečně přinese byznysovou hodnotu. Právě proto je klíčové zaměřit se na to, co dělá datový projekt opravdu úspěšným. Tak pojďme na to.

Ikony v reportu: Zaujměte na první pohled a zjednodušte navigaci | Mňamka #543

Ikony v reportu: Zaujměte na první pohled a zjednodušte navigaci | Mňamka #543

Vizuální zkratky, které promění datovou džungli v přehlednou mapu. Zjistěte, jak s pomocí ikon zjednodušit navigaci, zvýraznit klíčové informace a proměnit suchá data v poutavý příběh. Naučte se vybírat vhodné ikony, pracovat s nimi efektivně a odhalte, proč je jejich správné použití klíčové pro srozumitelnost a úspěch vašich reportů.

Jak předvídat chování zákazníků: Churn, životní hodnota a další klíčové ukazatele | Mňamka #542

Jak předvídat chování zákazníků: Churn, životní hodnota a další klíčové ukazatele | Mňamka #542

Porozumění chování zákazníků a jeho predikce jsou dnes klíčové pro firmy, které chtějí budovat loajalitu, zlepšit cílení kampaní a efektivně řídit své marketingové investice. Jak předpovědět, kdy zákazník odejde, jakou má pro firmu hodnotu nebo kdy s největší pravděpodobností znovu nakoupí? V článku se podíváme na klíčové koncepty, jako je predikce odchodu zákazníků (churn), výpočet jejich životní hodnoty (Lifetime Value), odhad pravděpodobnosti další interakce či modelování sklonu k nákupu. Získané poznatky mohou pomoci vytvářet efektivnější marketingové strategie a lepší zákaznickou zkušenost.