Design Patterns: Ceny s / bez DPH | Mňamka #100

Sazba daně se mění v čase a pokud máme uložené ceny s daní i bez, zaokrouhlené na dostatečný počet desetinných míst (alespoň 6), spolu se sazbou DPH v době vzniku transakce, nemusíme řešit zaokrouhovací rozdíly ani složitě dohledávat historickou sazbu DPH pro jednotlivé produkty. Náklady na storage jsou téměř nulové časová úspora k nezaplacení.

Postup v případě cen "S DPH" a "BEZ DPH" je stejný jako v našem předešlém Desig Patternu - Měna účetnictví, měna operace. 

Máte k článku nějaké otázky nebo připomínky? Klidně mi napište, ráda to s Vámi proberu :-)

Petra Horáčková
datový detektiv
LinkedIn

Pilíře úspěšného datového projektu | Mňamka #544

Pilíře úspěšného datového projektu | Mňamka #544

V Bizztreatu máme za sebou desítky datových projektů napříč různými odvětvími např. jako e-commerce, retail, výroba, média nebo obchod. Z praxe víme, že mnoho datových projektů selhává – nedoručí očekávaný přínos, uvíznou na půli cesty nebo se zacyklí v nekonečném „ještě to ladíme“. Bez ohledu na typ projektu či sektor platí, že úspěch vždy stojí na pevných základech – pilířích, které rozhodují o tom, jestli výstup skutečně přinese byznysovou hodnotu. Právě proto je klíčové zaměřit se na to, co dělá datový projekt opravdu úspěšným. Tak pojďme na to.

Ikony v reportu: Zaujměte na první pohled a zjednodušte navigaci | Mňamka #543

Ikony v reportu: Zaujměte na první pohled a zjednodušte navigaci | Mňamka #543

Vizuální zkratky, které promění datovou džungli v přehlednou mapu. Zjistěte, jak s pomocí ikon zjednodušit navigaci, zvýraznit klíčové informace a proměnit suchá data v poutavý příběh. Naučte se vybírat vhodné ikony, pracovat s nimi efektivně a odhalte, proč je jejich správné použití klíčové pro srozumitelnost a úspěch vašich reportů.

Jak předvídat chování zákazníků: Churn, životní hodnota a další klíčové ukazatele | Mňamka #542

Jak předvídat chování zákazníků: Churn, životní hodnota a další klíčové ukazatele | Mňamka #542

Porozumění chování zákazníků a jeho predikce jsou dnes klíčové pro firmy, které chtějí budovat loajalitu, zlepšit cílení kampaní a efektivně řídit své marketingové investice. Jak předpovědět, kdy zákazník odejde, jakou má pro firmu hodnotu nebo kdy s největší pravděpodobností znovu nakoupí? V článku se podíváme na klíčové koncepty, jako je predikce odchodu zákazníků (churn), výpočet jejich životní hodnoty (Lifetime Value), odhad pravděpodobnosti další interakce či modelování sklonu k nákupu. Získané poznatky mohou pomoci vytvářet efektivnější marketingové strategie a lepší zákaznickou zkušenost.